SPEECH USER INTERFACE EVOLUTION

- Authors: John Karat, Jennifer Lai, Catalina Danis and Catherine Wolf
 - IBM T.J. Watson Research Center

Presented by: Leena Walavalkar CSE 587 Introduction to Virtual Environments

Overview

- Introduction
- General characteristics of speech recognition (SR) systems considered in the paper
- Case studies
 - Personal Dictation Systems
 - MedSpeak
 - Conversation Machine
- Summary and Conclusions

Introduction

- Basic requirement of an automatic speech recognition (ASR) system – translate speech input into character strings or commands
- Relatively slow penetration of ASR into interfaces for computer systems maybe speech is not a good modality!
 - Going from an acoustic signal to some computationally useful translation is technically challenging
 - Speech natural mode of communication (but for humanhuman, not human-computer)
- Takes time and practice to develop new form of interaction

Goals of this paper

- Help us understand how to incorporate speech into other systems and applications through practical examples
- Identify some common problems associated with speech interfaces in all systems and applications
- Design considerations and error handling
- Address human factors and related issues

PERSONAL DICTATION SYSTEM

User characteristics:

- General purpose system. Hence target audience- anybody
- Assumption: users familiar with word processing on PC

Tasks:

- Speech enable existing word processing applications
- Develop a new full function editor to address wide audience
- Provided a speech window

Context of Use:

 Focus the design on production of medium to large quantities of text and view speech as an augmentation for other input devices

Capabilities and Constraints

Recognition Errors

Delay in timing between speech event and feedback.

- Make all error corrections in a single pass by providing information on what was said
 - Like keyboard, visually flag words that engine was less sure of. Also error correction mechanism modeled after spelling corrections dialogs (both did not work)

Lag in recognizing text

- IPDS algorithms based on language model. i.e probabilityof word match influenced by preceding and following word.Would not make a decision until then hence lag.
 - Also the best match could change with additional words

Capabilities and Constraints (contd)

Mode Switching

- Voice input directed to any applications running on a system.
- Is flexible but need to know what application is expecting input
- Proved easy for the system but difficult for users to keep track of
- Command words that are also dictated words gives rise to mode split problem
- Solution- inquire state of the desktop and create list of valid commands- but internal command names are not always obvious e.g copy and copy to clipboard
- Not reached a satisfactory resolution to "what I can say"

Lessons Learned

- Tracked the performance of the system by creating email forums and gather usage reports
- Use of IPDS to compose email showed that it is fine for creating short pieces of informal text but not satisfactory for longer pieces
- SR technology provides <u>some</u> benefits for <u>some</u> tasks over keyboard but overall integration still lacking

• Critique

- Makes the point of h-h communication against h-c communication
- Need more knowledge of text entry

MedSpeak – Uses continuous recognition

- User Characteristics: user group-radiologists
- **Task:** Replace the existing method of radiologists using a tape or digital recording system to create a report
- **Context of Use:** Radiologists dictate in noisy rooms; can be more than one radiologist dictating in one room
- Capabilities and Constraints
 - Initial version of SR engine had a speaker independent model (i.e used merging and averaging of samples)
 - Use of more samples resulted in higher accuracy
- Difference in accuracy rates between read speech and spontaneous speech increased error and user frustration
 - Not robust to silence recognizes mumble and pause

MedSpeak General Design Issues

- Narrowly defined set of users with known characteristics
 Less than 2 hours training as doctors are reluctant to use
 computers
- Should not be intimidating to first time users
- Default interface displays only basic function set user decides when to move to advanced level of functionality
- Functions not organized as menus but accessible through large push buttons which can be activated by voice
- Also provided keyboard/mouse alternative to pushbuttons
- Even with buttons and functions users forget command to invoke the button-provide 'what I can say' command
 - Gave users a sense of closure, increased satisfaction

MedSpeak SR Design Issues

Recognition failures

- Keep a history of recently recognized commands

Recognition errors

- Occurs less frequently than recognition failures because have longer commands
- For most wrong recognized command undo possible, for destructive command user would confirm action.

Latency

– Not a major problem

Error correction

- Error due to word being out of vocabulary or due to mispronounciation – Solution dialogue box
- Difference between error correction and mind change

MedSpeak SR Design Issues

Feedback of State

- User should know what mode he/she is in, dictation pause dictation or command. Achieved using color.

Eyes-Busy/Hands-Busy

- This constraint well supported by speech modality
- Due to technology constraint, digit recognition, changing settings etc, had to be done using keyboard.

• Enrollment

Using system frequently gave accurate results especially for people with different accent

Lessons Learned

- Long way from building a prototype to usable version
- If accuracy is below a certain threshold, users are not interested in spending time
- Users that are disappointed the first time are difficult to motivate for a more sustained effort
- Oral composition a big factor (how clean and smooth the user speaks) leads us to Natural Language Understanding

THE CONVERSATION MACHINE

- User characteristics:
 - Anyone who calls automated telephone banking service
- Task:
 - goal is to accomplish a transaction using speech
 - Has dialogue processing component, hence utterance need not be recognized word-for-word match.
 - Implications of what constitutes error and accuracy different.
 - Task involves transactions, should provide fail-safe method to recover from errors.
- Context of Use:
 - Acoustic context background noise
 - Absence of visual display feedback through auditory channel

Capabilities and Constraints

- Vocabulary limited for continuous recognition applications
- Limit on vocabulary depends on factors for e.g.
 - complexity of grammar
 - possibility of natural language/dialogue management component compensating for recognition errors
 - User, task, context of use
 - Due to natural language processing error correction does not depend on recognition of unique utterances

Error Causes and recovery methods		
Example	Cause of Error	Error Recovery
Mispronouncia -tion of a word	Speech misrecognition	Repeat or rephrase request
Surrounding noise	Background noise causes error	Repeat/rephrase in quiet environment
"what's the damage going to be for my Visa bill?"	Use of phrase not in SR or natural language grammar	Rephrase request- "How much is my Visa bill?"
"How much was my electricity last month?"	System does not know information requested	Change goal

-

Summary and Conclusions

- Non technical factors (industry, negotiations etc) in making of a practical interface
- Targeted audience makes a difference
- Human acceptance less patience hence system should have less errors
- Whether an alternate approach exists- depends on application
- Personal factors i.e fluent speech, different accent etc (specific only to speech interface)
- Must include Natural Language Processing if want the interaction close to human-human